White matter hyperintensities and their penumbra lie along a continuum of injury in the aging brain.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Aging is accompanied by clinically silent cerebral white matter injury identified through white matter hyperintensities (WMHs) on fluid-attenuated inversion recovery (FLAIR)- and diffusion tensor imaging-based measures of white matter integrity. The temporal course of FLAIR and diffusion tensor imaging changes within WMHs and their less-injured periphery (ie, their penumbra), however, has not been fully studied. We used longitudinal diffusion tensor imaging and FLAIR to explore these changes. METHODS One hundred fifteen participants, aged 73.7±6.7 years, received clinical evaluations and MRIs on 2 dates. WMHs and fractional anisotropy (FA) maps were produced from FLAIR and diffusion tensor imaging and coregistered to a standardized space. Each distinct WMH was categorized as growing, stagnant, or noncontiguous incident. The penumbra of each WMH was similarly categorized as corresponding to a stagnant, growing, or noncontiguous incident WMH. Linear mixed-effect models were used to assess whether FA and FLAIR measurements changed between baseline and follow-up and differed between tissue categories. RESULTS Baseline FA differed significantly by tissue category, with the following ordering of categories from highest to lowest FA: penumbra of noncontiguous incident, then stagnant, then growing WMHs; noncontiguous incident, then stagnant, then growing WMHs. Despite differences in baseline values, all tissue categories experienced declines in FA over time. Only noncontiguous incident WMHs showed significant FLAIR signal increases over time, and FLAIR signal significantly decreased in stagnant WMHs. CONCLUSIONS WMHs and their penumbra vary in severity and together span a continuous spectrum of white matter injury that worsens with time. FLAIR fails to capture this continuous injury process fully but does identify a subclass of lesions that seem to improve over time.
منابع مشابه
White matter hyperintensity penumbra.
BACKGROUND AND PURPOSE White matter hyperintensities (WMHs) are associated with progressive age-related cognitive decline and cardiovascular risk factors, but their biological relevance as indicators of generalized white matter injury is unclear. Diffusion tensor imaging provides more sensitive indications of subtle white matter disruption and can therefore clarify whether WMHs represent foci o...
متن کاملWhite matter hyperintensities are associated with visual search behavior independent of generalized slowing in aging.
A fundamental controversy is whether cognitive decline with advancing age can be entirely explained by decreased processing speed, or whether specific neural changes can elicit cognitive decline, independent of slowing. These hypotheses are anchored by studies of healthy older individuals where age is presumed the sole influence. Unfortunately, advancing age is also associated with asymptomatic...
متن کاملIncident lacunes preferentially localize to the edge of white matter hyperintensities: insights into the pathophysiology of cerebral small vessel disease.
White matter hyperintensities and lacunes are among the most frequent abnormalities on brain magnetic resonance imaging. They are commonly related to cerebral small vessel disease and associated with both stroke and dementia. We examined the spatial relationships between incident lacunes and white matter hyperintensities and related these findings to information on vascular anatomy to study pos...
متن کاملWhite Matter Hyperintensities among Older Adults Are Associated with Futile Increase in Frontal Activation and Functional Connectivity during Spatial Search
The mechanisms by which aging and other processes can affect the structure and function of brain networks are important to understanding normal age-related cognitive decline. Advancing age is known to be associated with various disease processes, including clinically asymptomatic vascular and inflammation processes that contribute to white matter structural alteration and potential injury. The ...
متن کاملSupervised learning technique for the automated identification of white matter hyperintensities in traumatic brain injury.
BACKGROUND White matter hyperintensities (WMHs) are foci of abnormal signal intensity in white matter regions seen with magnetic resonance imaging (MRI). WMHs are associated with normal ageing and have shown prognostic value in neurological conditions such as traumatic brain injury (TBI). The impracticality of manually quantifying these lesions limits their clinical utility and motivates the ut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stroke
دوره 45 6 شماره
صفحات -
تاریخ انتشار 2014